
Profile-guided Optimization for
Cloud Services

Accelerating Serverless Cold Starts and Reducing Unnecessary
Service-to-Service Communication

Probir Roy
University of Michigan Dearborn

Scalable Tools Workshop 2025

1

Cloud-Native Complexity

• Distributed Architecture:
• Cloud services composed of loosely coupled, networked components.
• Implication: Extensive inter-service communication, incurs end-to-end latency.

• Transient and Ephemeral Environments:
• Short-lived, dynamic environments creates new challenges for efficiencies.
• Implication: Serverless functions exhibit frequent redeployments and

reinitialization, resulting in cold-start latency.
• Multi-Level Abstraction:

• Layers include application logic, third-party libraries, containerization,
orchestration.

• Implication: Complexity obscures fine-grained performance visibility, and limit
performance optimizations.

2

Performance Matters for Cloud Services

100ms increase in latency cost them 1% in sales

Extra 500ms in Google response time drops traffic by 20%

https://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

https://www.niels-ole.com/amazon/performance/2018/10/27/100ms-latency-1percent-revenue.html
3

Opportunities for Cloud Service Optimization

• Identify inefficient code responsible for serverless cold-start

• SLIMSTART: Reducing Library Loading Overhead by Profile-guided
Optimization (ICDCS’25)

• Identify unnecessary data movement in cloud-services

• MicroProf: Code-level Attribution of Unnecessary Data Transfer in
Microservice Applications (TACO’23)

4

SLIMSTART: Reducing Library Loading
Overhead by Profile-guided Optimization

5

SLIMSTART - Serverless Cold-Start Problem

Timeline of serverless function lifecycle events

Ratio of library Initialization time to end-to-end time 6

Motivating Example: Unnecessary Library
Imports and Initialization

7

Static Analysis are Inadequate

8

Challenges of Identifying and Localizing
Inefficiency
• (1) Precise source-level attribution of library initialization

inefficiencies
• Serverless Function
 ↓ imports
utils/analytics.py
 ↓ imports
pandas (data-processing library causing significant overhead)

• (2) Differentiating essential import statements from non-essential
based on runtime utilization

• For example, a function importing an entire authentication library might
only utilize a single method, making the initialization of the complete
library unnecessary

9

SLIMSTART: Workflow

10

SLIMSTART: Profiler

11

SLIMSTART: Attribution and visualization

12

Attribution details (1): Library Initialization

• Module-level attribution of library import:
• Aggregates latency within a library’s internal structure to pinpoint exact modules

or submodules causing the most significant overhead (e.g., detecting 160 ms
latency within pandas, specifically 120 ms in pandas.core and 40 ms in
pandas.core.algorithms).

• Source-level attribution of library import:
• Directly attributes initialization latency to specific source-level import

statements (e.g., pinpointing overhead at handler.py:42).

• Calling-context attribution of library import:
• Traces the complete sequence of nested importer invocations, clearly revealing

latency propagation paths (e.g., handler.py:42 → utils/metrics.py:10
→aws_xray_sdk/tracing/__init__.py:5 →boto3/session.py:18)

13

Attribution details (2): Library Utilization

• Module-level attribution of library usage:
• Aggregates invocation frequencies per library module and

submodule(e.g., 120 samples in crypto.hash, 45 samples in
crypto.pbkdf2)

• Source-level attribution of library usage :
• Links sampled invocations directly to specific application code lines,

quantifying invocation frequencies (e.g., security.py:58 invoked 80
times in 500 samples).

• Calling-context attribution of library usage:
• Reconstructs the entire chain of function calls executing library code,

tallying each distinct path’s frequency (e.g., call pathhandler.py:102 →
auth/validate.py:20→ crypto/hash.py:15 occurred 60 times).

14

SLIMSTART: Analysis and Visualization

• Initialization Overhead View:
• Sorts libraries and sub-modules based on initialization overhead
• enabling developers to quickly pinpoint those contributing significantly to

cold-start latency and their call sites.
• Inefficiency Prioritization View:

• Combines initialization overhead with a utilization metric (ratio of
initialization overhead to invocation frequency)

• Highlights libraries that incur high initialization costs but are in-frequently
used

• Source-level Context View:
• Directly maps initialization latency, invocation frequencies, and detailed

import and usage call-paths to specific lines of code.

15

SLIMSTART: Importing Unused Libraries

16

SLIMSTART Evaluation

17

MicroProf: Identifying Unnecessary Data
Movement in Cloud-Services

18

Challenges in Microservices
• Possess higher communication to computation ratio

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems." ASPLOS. 2019.

19

Unnecessary Data Transfer: Motivating
Example

20

MicroProf Methodology

21

MICROPROF: Critical Path Analysis

22

Inclusive time

MICROPROF: Profiling

23

Case Study of TrainTicket
 Application ts-route-plan-service Contd

≅
1.25X

24

Future Directions

• Performance variability challenges cloud native application
• Contention in shared resources

Freischuetz, Johannes, Konstantinos Kanellis,
Brian Kroth, and Shivaram Venkataraman.
"Tuna: Tuning unstable and noisy cloud
applications." In Proceedings of the Twentieth
European Conference on Computer Systems,
pp. 954-973. 2025.

25

Conclusion

• Importance of addressing application-level inefficiencies
• There is a gap in developer tools targeting cloud services
• MicroProf and SLIMSTART as effective optimization tools

Demonstrated latency and resource utilization improvements

26

Q&A

• Thank you!
• Probir Roy (probirr@umich.edu)

27

	Profile-guided Optimization for Cloud Services�
	Cloud-Native Complexity
	Performance Matters for Cloud Services
	Opportunities for Cloud Service Optimization
	SLIMSTART: Reducing Library Loading Overhead by Profile-guided Optimization
	SLIMSTART - Serverless Cold-Start Problem
	Motivating Example: Unnecessary Library Imports and Initialization
	Static Analysis are Inadequate
	Challenges of Identifying and Localizing Inefficiency
	SLIMSTART: Workflow
	SLIMSTART: Profiler
	SLIMSTART: Attribution and visualization
	Attribution details (1): Library Initialization
	Attribution details (2): Library Utilization
	SLIMSTART: Analysis and Visualization
	SLIMSTART: Importing Unused Libraries
	SLIMSTART Evaluation
	MicroProf: Identifying Unnecessary Data Movement in Cloud-Services
	Challenges in Microservices
	Unnecessary Data Transfer: Motivating Example
	MicroProf Methodology
	MICROPROF: Critical Path Analysis
	MICROPROF: Profiling
	Case Study of TrainTicket� Application ts-route-plan-service Contd
	Future Directions
	Conclusion
	Q&A

